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ABSTRACT: The flow past a wedge of a viscous incompressible fluid has been discussed. The steady flow of Newtonian and 

Micro-polar fluid is under discussion. A similarity transformation is used to condense the non-linear Partial Differential 

Equations to a system of ordinary differential equations. The resultant equations are then merged by using the required 

numerical ways and means. The system is solved numerically. The different three grid sizes are used to maintain the 

accurateness. The excellent comparison obtained. The results calculated for Newtonian fluid are approximate to the previous. 

The dimensionless Micro-polar fluid equations are used to establish the resulting governing equation. The difference equations 

for numerical solutions are finite. At the end all cases with numerical results are described in both graphical and tabular form. 

 
Keywords: Flow past a wedge, Newtonian fluid, Micro polar fluid  

 

1. INTRODUCTION 
We live in an environment of air and of water to a great 

extent, so that almost everything we do are connected in 

some way to the science of fluid mechanics [1]. Eringen [2, 

3] developed the principle of a class of fluids known as 

Micro-polar liquids because of limited structure and micro-

motion of the fluids apparent certain microscopic effects. The 

Micro-polar liquids are viscous having additional constants of 

 ,,,,  and k are viscosity constants in Micro-polar fluids 

while   is the viscosity constant in Newtonian fluids. 

The effects of the steady rotational motion of polar fluids 

were studied by Cowen and Pennington. Cowin [4] given the 

theory of Micro-polar fluids might be applied to electro-

hydrological fluids. Guram and Smith [5] studied the 

geometrical features of steady Ekman flow of Micro-polar 

fluids. The problem of steady flow in a parallel-walled 

channel, determined by steady uniform suction through the 

permeable channel walls for Newtonian fluids was studied by 

Berman [6].  

In the present work, I have scrutinized the steady flow of a 

Micro-polar fluid past a wedge. Falkner and Skan (1930) [7] 

studied this problem for the first time for Newtonian fluids 

and later its solution was studied in detail by Hartee (1937) 

[8]. They used similarity transformations in order to diminish 

the Navier-stokes equations [9] to an ordinary differential 

equation and then gave a series solution of resulting ordinary 

differential equation. In this work I have considered the 

steady case of the above problem and determined the 

numerical solutions for both Micro-polar fluids and 

Newtonian fluids. The suitable combination of S.O.R. 

method has been used to integrate these equations 

numerically 

 
2. MATERIAL AND METHODS  
The numerical solution for the Navier Stokes equations for 

flow past a wedge of a viscous incompressible Newtonian 

fluid and viscous incompressible Micro-polar fluid have been 

discussed in this paper. Similarity transformations method is 

used to condense   the Navier stokes equations to one 

ordinary differential equation. But for two-dimensional 

Micro-polar flow, it condenses the main equations to two 

ordinary differential equations. Equations are solved 

numerically in both cases. Their consequences have been 

compared and discussed. 

The purpose of this study is to found a numerical method, 

which is more effectual, reasoning, and precise as matched to 

the other present numerical methods. 

2.1 Basic Analysis for two Dimensional Micro-polar Flow 

Past A Wedge 

For incompressible Micro-polar fluids, the main equations 

given by Eringen [2] are 
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 From these equations we can have following results 

1) Flow is steady, laminar and fully developed. 

2) Body forces and body couples are neglected. 

3) Co-ordinate system used is the Cartesian system. 

4) The flow is two dimensional. 

5) The wedge angle   
 is given by

1

2




m

m
 ,      

m is a constant. 

Let u, v be the constituents of velocity and 321 ,, vvv , the 

micro-rotational components. Under above assumptions the 

above equations of motion reduce respectively to 
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And 

VvkVk  )()()(                                    (5) 

vVjvkVkvyvya ).(2)()().()(    (6) 

In order to solve these equations, we present the following 

similarity transformations 
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where  is a dimensionless variable. 

The particular case considered here is for m = 1 and    = 1. 

For this case, the problem under consideration becomes as 

shown in figure (1).  

 

 
Fig. 1:   Physical Model of flow Past a Wedge 

The equations (7), therefore, become 
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Finally equations of motion to be solved may be written as: 
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Condition to the boundary values: 
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are non-dimensional constants. 

For numerical purposes, by rewriting the equation (9)   
 FP   

and so equation (9) become as 
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While the boundary conditions take the form as: 
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If we estimate the derivatives in equation (10) by central – 

difference approximations at a typical point  
n   of the 

interval  ,0 , we obtain 
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Where h denotes the grid length and  

nnnnnn HHPPFF  )(,)(,)(   

Integrate numerically equation using 1/3Simpson’s rule and 

equations (11) and (12) at each require point of the interval 

 ,0  as follows: 
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With the formula given in [42] to calculate 
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The system of finite difference equations (13) and (14) are 

solved by using S.O.R iterative procedure giving 
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Condition to the appropriate boundary values. 

F=0, P=0, H=0 at η=0 

P=1, H=0 at η→∞ 

As   is a reduction constraint and 1 <  < 2. 

The iterative order is as under: 

These equations are solved condition to the limits 

F=0, P=0, H=0 at η=0 

P=1, H=0 at η→∞ 

Whereas we use these values to establish the matrix of P and 

H respectively. 

The calculated solution for P is then hired into the equations 

(13) and (14). These equations are solved subject to F = 0, 

when
 
η=0. 

The method is repeated till all the solutions have move 

toward to some prearranged criteria of accuracy given by 
61 10)()(   ff n  

as an ending condition. Also the calculations were checked 

for changed values of the reduction constraint  between 1 

and 2. The best considered value of the reduction constraint is 

1.5. 

2.2 Basic Analysis for Two Dimensional Newtonian Flow 

past a Wedge 

The Navier-Stokes equations and the continuity equation for 

incompressible fluid are given by respectively 

 Vp
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Where V  and   are the velocity vector and the density of 

the fluid. The succeeding suppositions are made for the 

problem under concern. 

 Flow is stable, laminar and fully developed. 

 Coordinate system used is the Cartesian system. 

 The flow is two dimensional. 

 The Wedge angle   is given by
1

2


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m
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m is a constant. 

Under the above assumptions, the velocity vector is given by 
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then the above equations  become 
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where P is the pressure, 



v

 is kinematic Viscosity and 

  denotes viscosity coefficient. Condition to the limit 

values 
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In case of steady flow the pressure depends only on x, so  
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To solve equation (19) we present the following similarity 
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where  is a dimensionless variable 
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Equation (23) is required and the limit values become 
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The equation (23) non-linear and do not give logical 

solutions. We have to use numerical techniques to solve the 

equation. For numerical calculation, we rephrase the 

equations (23) by letting 
 FP   

and so equation (23) become as 
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While the boundary condition take the form as: 
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Two particular cases i.e., for 1 , m = 1 and 0 , m = 0, 

in the problem under consideration are studied. For the above 

said cases our problem become as shown in figure (1). The 

equation become as 
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We estimate the derivative in equation (25) and (26) by 

central – difference approximations at a typical point n   
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ii) Difference equation for 0,0  m  

 

0
2

2 11

2

11 






 


 

h

PP
F

h

PPP nn

n

nnn  

0242 1111   nnnnnnn PhFPFhPPP
 

0)2(4)2( 11   nnnnn PFhPPhF                            

(28) 

where h denotes the grid size and 
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As   1 < < 2 and  is a reduction parameter 

The iterative order is as follow. 

i)  These equations are depend on the values 
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ii)  The calculation for P is used into equations. These 

equations are solved for F = 0 when  to determine the 

values of F. 

The process is continual till the solution has accuracy level 

given by 
61 10)()(   nn ff  

as regarded ending condition. Also the calculation is checked 

for different values of the reduction constraint  among 1 and 

2. The best significance of the reduction constraint is 1.5. 

 

3. RESULTS AND DISCUSSION 
The numerical results have been computed for a grid size,     

h = 0.02 for the three cases.  

Case I C1 = 0.9 C2 = 0.9 C3 = 1.6 C4 = 1.6 

Case II C1 = 0.49 C2 = 1.26 C3 = 1.74 C4 = 2.24 

Case III C1 = 0.49 C2 = 1.49 C3 = 2.48 C4 = 2.99 

The accuracy of the consequences is checked by comparing 

on diverse grid sizes. The results are tabulated in (1 – 3), for 
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the values of PFF ,  and H. For 00.3   comparison of 

the results of Micro-polar fluid for the cases I, II, III with the 

results of the Newtonian fluid showed in Table 7.   

The results are presented for PFF ,  and H in Graphs (1 

– 3), for the values of h = 0.01, 0.02 and 0.06 for case I, II, 

III. For all the grid sizes the value of the reduction parameter 

is 1.5. 
 

Table-1: Case 1, h = 0.01, m = 1,  = 1 
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Graph - 1 

Table 2:  

 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 

F() 0.0000 0.1336 0.4591 0.8871 1.3617 1.8541 2.3515 2.8513 3.3518 3.8518 4.3518 

F’() 0.0000 0.4945 0.7777 0.9160 0.9731 0.9928 0.9985 0.9997 0.9999 1.0009 1.0000 

 
Graph – 2\ 

 

Table 3: Case 3, h = 0.06, m = 1,  = 1 

 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 

F() 0.0000 0.0580 0.2307 0.5107 0.8803 1.3143 1.7865 2.2771 2.7744 3.2739 3.7738 

F’() 0.0000 0.2319 0.4567 0.6569 0.8129 0.9143 0.9679 0.9903 0.9977 0.9996 1.0000 

 

 
Graph – 3 

The mathematical solutions for m = 1 and 1  is calculated 

for three diverse grid sizes, namely, h = 0.01, 0.02 and 0.06 

and the result is shown in tables (4 – 6). 

The accurateness of the fallouts is checked by equating the 

fallouts on different grid sizes. The evaluation is brilliant. 

The results for F and PF   are offered at different grid 

sizes, namely, h = 0.01, 0.02 and 0.06 in graphs (4 – 6). The 

value of grid size h is shown in tables (4 – 6). For all the grid 

sizes the value of the reduction parameter is 1.5. 
Table 4: Case 1, h = 0.01, m = 1,  = 1 

 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 

F() 0.0000 0.0586 0.2328 0.5148 0.8864 1.3220 1.7951 2.2860 2.7835 3.2830 3.7829 

F’() 0.0000 0.2341 0.4604 0.6612 0.8165 0.9167 0.9690 0.9908 0.9978 0.9996 1.0000 

 
Graph - 4 

Case 1,  h = 0.01,   = 1, m = 1
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Case 1,  h = 0.01, = 1, m = 1
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Table 5: Case 2, h = 0.02, m = 1,  = 1 

 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 

F() 0.0000 0.1336 0.4591 0.8871 1.3617 1.8541 2.3515 2.8513 3.3518 3.8518 4.3518 

F’() 0.0000 0.4945 0.7777 0.9160 0.9731 0.9928 0.9985 0.9997 0.9999 1.0009 1.0000 

 

 

 
Graph - 5 

Table 6: Case 3, h = 0.06, m = 1,  = 1 

 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 

F() 0.0000 0.0580 0.2307 0.5107 0.8803 1.3143 1.7865 2.2771 2.7744 3.2739 3.7738 

F’() 0.0000 0.2319 0.4567 0.6569 0.8129 0.9143 0.9679 0.9903 0.9977 0.9996 1.0000 

 
Graph - 6 

Table 7: Evaluation of Results of Micro-polar fluids and 

Newtonian fluids at = 3.00,  h = 0.06 

Case – I 
Micro-polar fluid 

Newtonian fluid 

F = 3.2216 

F = 3.1180 

F’= 0.9976 

F’= 0.9811 

Case – II 
Micro-polar fluid 

Newtonian fluid 

F = 3.4429 

F = 3.3312 

F’= 0.8933 

F’= 0.9155 

Case – III 
Micro-polar fluid 

Newtonian fluid 

F = 3.2918 

F = 3.2988 

F’= 0.9872 

F’= 0.9233 

 

4. CONCLUSION 
In this thesis numerical solution of two dimensional ideal 

fluid flow problem is presented. The flow past a wedge of a 

viscous incompressible fluid has been discussed It is a 

problem of steady flow of Newtonian and Micro-polar fluid. 

The velocity of the flow field at any point can be obtained by 

summing the contribution of all the surface elements and 

adding the contribution of the uniform onset flow. The 

pressure coefficient at any point of the flow field can be 

obtained. The comparison of results of two fluids are given 

above in Table-7. 
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